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Unstable Fronts in a Porous Medium 
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A stochastic numerical scheme is used to follow the motion of a fluid interface through a 
porous medium. Fluid velocities are computed by Darcy’s law, but the interface is advanced at 
a single point chosen with probability proportional to the pressure gradient. Although the 
expected result of each time step is proportional to that predicted by a continuum calculation, 
the discreteness of the scheme excites the (physical) instability which occurs when the fluid 
initially saturating the porous medium is displaced by a fluid of lower viscosity. The example 
of a live-spot oil reservoir is studied; predicted sweep efficiencies are slightly higher than 
experimental results, but the form of the tingering is in good qualitative agreement with 
experiments, even at high viscosity ratios. Grid orientation effects are low, and the effect of 
grid size can be reduced if care is taken to preserve trapped islands of fluid. 0 1987 Academic 

Press, Inc. 

1. INTRODUCTION 

The interface between two fluids flowing in a porous medium is unstable [ 1 ] 
when the more viscous fluid initially occupying the pore space is displaced by a 
fluid of lower viscosity. Numerical studies of the motion of such an interface must 
not only faithfully follow the development of the instabilities, but must also control 
the degree to which the instability is excited by the numerical scheme itself. In two 
dimensions, the equations governing Darcy flow in a porous medium are the same 
as those governing flow between two closely spaced parallel plates, the “Hele-Shaw 
cell,” which has been the subject of many numerical studies [2, 31. In particular, 
the development of the Saflman-Taylor instability [l] has been investigated by 
Tryggvasson and Aref [4], using vortex methods. The resulting lingers are indeed 
similar to those observed in a Hele-Shaw cell. 

However, our interest here lies in flow through porous media. The lingers obser- 
ved in packed bead beds [S, 61 do not resemble those in Hele-Shaw cells, even 
though the governing macroscopic equations are the same. Flow in the bead bed 
occurs through a series of discrete pores which are not present in the Hele-Shaw 
cell. A discrete scheme, based on diffusion limited aggregation [7], has been 
introduced by Paterson [8] for the case when one of the fluids is inviscid. Here we 
examine the extensions to finite viscosity ratios discussed in [9-121. Finite differen- 
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ces are used with no attempt made to hide the discreteness of the scheme. The 
pressure field is calculated on the basis of Darcy’s law, but the interface is advanced 
by discrete steps, thereby exciting the instability of the front. 

In Section 2 we present the scheme and discuss its relation to the random choice 
method [ 131 for hyperbolic equations. Solutions for linear flow are briefly presen- 
ted in Section 3, and in Section 4 we consider the classic numerical problem of the 
live-spot oil reservoir. 

2. THE NUMERICAL SCHEME 

We assume that the rock is saturated either with the fluid initially present, (fluid 
1, with viscosity p,), or with the injected fluid (fluid 2). The fluid velocity u is given 
by Darcy’s law 

u= -“VP, 
l-l 

where p is the pressure and k is the permeability of the rock. We consider miscible 
displacement in which interfacial tension between the fluids is ignored, and in which 
k is identical for the two fluids; henceforth k is assumed uniform and set equal to 1. 
The fluids are assumed incompressible. Hence 

V*u=Q and vp = 0, 

except at injection points. The front between the two fluids is convected with the 
fluid, and is thus determined by an advection equation 

;+v. (uc)=O, 
where c takes the values 1 or 0 in the injected fluid and in the original fluid, respec- 
tively. Note that we ignore dispersion. This would lead to mixing of the fluids, to 
intermediate values of c and to intermediate values of the viscosity, which would 
become a function of c. 

When the injected fluid is less viscous than the fluid it displaces (pL2 < pL1), the 
front between the fluids is unstable and lingers of injected fluid will invade the rock. 
The lingering will occur on all length scales, though the smallest lingers will be 
destroyed by the effects of dispersion and molecular diffusion. In the simulations 
presented here, the cut-off at small length scales is at the size of the finite difference 
grid. 

With incompressible fluids, the pressure satisfies the Laplace equation and the 
front advances with the fluid velocity c.cVp. These same equations govern the flux of 
Brownian particles following a random walk [ 141, and Paterson [8] has made use 
of this analogy to model flow in porous media. If the particles encounter a growing 
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aggregate, they stick to it: the aggregate represents the body of injected fluid advan- 
cing into the rock. However, the aggregate corresponds to an iso-potential. This 
analogy with Diffusion Limited Aggregation [7] therefore only holds when one of 
the fluids is inviscid. It is this restriction which we have sought to remove. 

We study two dimensional (x, y) flow, using a square grid for the finite difference 
scheme. Within each of the zones occupied by a single fluid, the fluid velocity (u, u) 
between blocks (i, i), (i + 1, j) is 

IA 
PI - Pi+ 1 

r+ l/2 = 
P . 

We consider the entire rectangle (i - 4, i + 4) x (j - f, j + 4) to be occupied by fluid 1 
if the point (i, j) is so occupied. The interface between the fluids therefore lies 
midway between gridpoints, and is parallel to either the x or y axis. Continuity of 
velocity normal to the interface implies 

2(P, -Pi+ 1) 
ui+ l/2 = 

Pl+P2 

if the two gridblocks contain different fluids. Incompressibility then leads to the 
standard live point Laplacian operator within each fluid, with a modified form at 
the interface; the pressure field is determined by Gauss-Seidel iteration. 

Once the fluid velocity is known, we can then solve the advection equation for 
the position of the interface between the two fluids. A classical numerical scheme 
would advance the entire interface by a distance proportional to the fluid velocity 
(and hence to the pressure gradient). Rather then adopt this continuum approach, 
we continue with a discrete scheme in which the injected fluid 2 advances into, and 
fills, a single elementary rectangle of the finite difference grid at each time step. One 
segment of the interface is chosen with probability proportional to the modulus of 
the local normal pressure gradient In . Vpl, and is advanced in the direction of 
n(u. n). The expected advance is therefore proportional to that predicted by a 
classical scheme. However, a classical scheme would also allow arbitrary orien- 
tation of the interface, and hence an arbitrary direction of motion. Finally, we note 
that in the implementation considered here, fluid 2 always replaces fluid 1, and 
those portions of the interface which might move in the opposite direction are 
frozen (before the pressure gradients and corresponding probabilities are com- 
puted). This restriction has been relaxed in a somewhat similar scheme by 
DeGregoria [IO], while King and Scher [9] have shown how intermediate 
saturations and relative permeabilities may be introduced. 

An alternative approach would be to solve the hyperbolic equations for the 
advancing interface by means of the random choice method [13, 15-213. In this 
method the expected advance is also proportional to that predicted by a classical 
scheme, and the step interface between the fluids is preserved by sampling the exact 
solution of a one-dimensional Riemann problem. An important difference is that in 
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FIG. 2. The five-spot well pattern. 

a INJECTED VISCOSiTY=1OOO NI= 160 
INITIAL VlSCOS1TY=O.lOo NJ-160 
INITIAL SEED=4037 
NUMBER OF STEPS=22960 

::: 
0 20 40 60 60 100 120 140 160 160 200 220 

3. 
(a 

Simulations of the displacement fronts at breakthrough, using a diagonal go 
0.1; (b) 1.01; (c) 100. 

rid. V iscosit atio 
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b INJECTED VISCOSIlY=1.OOO NI=l60 
INlTIAL vIsc0sITY=1.010 NJ=160 
INITIAL SEED=4043 
NUMSER OF STEPS=19373 

DENSITY 
1.0 

FIG. 3-Continued. 

the random choice method the interface advances at many points simultaneously. 
In the results presented here the advance always occurs at one and only one point. 
In the random choice method the number of points of advance at each time step 
will be small when the time step is short. However, this is precisely the condition 
which maximises the standard deviation of the results obtained [ 131. The results of 
Sections 3 and 4 can is this sense be regarded as an extreme case of the random 
choice method. 

The random numbers used here also serve to excite the instability, and are sam- 
pled throughout the course of the simulation. The randomness of flow in real 
porous media has been studied both on the macroscopic scale [22,23] and on the 
scale of pores and capillaries [2&26]. However, such calculations are completely 
deterministic once the properties of the media have been assigned. 
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C INJECTED VISCOSITY=1 000 Nl= 1.30 
INITIAL VISCOSITy=1OO.OOO NJ=160 
INITIAL SEED=4035 
NUMBER OF STEPS=10511 

FIG. 3-Continued. 

Although the results can appear very similar to those presented here, the links (if 
any) between the simulations are as yet unclear. 

3. LINEAR FLOODING 

Figure 1 shows the results of calculations for linear flooding. Flow is from left to 
right, and black regions represent injected fluid. The left- and right-hand boun- 
daries are held at constant pressure; Neumann boundary conditions are applied on 
the remaining two sides. The interface between the two fluids is initially five blocks 
in from the injection edge in order to reduce edge effects. Gauss-Seidel iteration is 
used to solve for the pressure. Up to six iterations are performed on the 9 x 9 blocks 
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l?&JECl-ED VISCOSI'IY=l.OOO 
a LNITM vIsc0sITY=0.100 

INITIAL SEED=4037 
NUMEGER OF STEPS= 11599 

NI=lSO 
NJ=160 

0.0~ 
0 20 40 60 60 100 120 140 160 160 200 220 

FIG. 4. Simulations of the displacement fronts at breakthrough, using a parallel grid. Viscosity ratio 
p,/pz= (a)O.l; (b) 1.01; (c) 100. 

surrounding the point at which the interface has advanced, followed by sweeps over 
the entire array until the sum of the squares of residuals is sufficiently small (usually 
lo-’ x number of gridpoints). The number of iterations is typically between 1 and 
15. A single iteration suffices if the interface has advanced in a region with low 
pressure gradients, or if the viscosity ratio is close to unity. When the grid is of size 
160 x 160, 2000 time steps take approximately one hour on a VAX 785. Other 
studies of linear flooding, using the random choice method (but with intermediate 
saturations and relative permeabilities) are reported in [15-l 71. 

In figure la the viscosity ratio p,/pL2 = 104. The interface is unstable. The growing 
fingers exhibit the sideways branching observed, on the microscopic scale, in etched 
glass networks of pores and capillaries [24]. In Fig. lbd the viscosity ratio is 
reduced to 10, 1.01, and 0.1. The same volume of fluid, 3000 grid blocks, has been 
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b INJECTED VlSCOSIl-Y=1.OOO 
INITIAL VISCOSITY=l.OlO 
INITJAL SERD=4041 
NUMBER OF STEPS=9112 

Nl=lSO 
NJ=160 

FIG. 4-Continued. 

injected in each case. In Fig. Id the front is stable, with random fluctuations which 
do not grow. When the viscosity ratio is unity (Fig. lc) the pressure gradient is con- 
stant throughout the simulation. Each point of the interface has an equal 
probability fl of motion. If we relax our restriction of a single point of advance, we 
have a series of independent Bernouilli trials. For each value of y, the x co-ordinate 
of the front has a binomial distribution, with mean X = bt, variance (x-X)‘= 
flt( 1 - /3). We have introduced a degree of numerical dispersion, and lateral diffusion 
would also be present if the flow was not aligned with the coordinate axes. 
Simulations of radial flow [12] show similar grid orientation effects when the two 
viscosities are equal. However, these effects disappear at other viscosity ratios, 
either because the front is stable, or because the grid effect is hidden by the ran- 
domness of the motion in the unstable case. It is known from simulations of Dif- 
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C INJECTED VX3COSITY=1.OOO 
INITIAL vIsc0s1TY=100.000 
INITIAL SEED=4037 
NUMBER OF STEPS=5165 

NI=160 
NJ-160 

DENSITY 
1.0 

FIG. 4-Continued. 

fusion Limited Aggregation that grid effects are still present even when pz = 0 [27], 
though the effect is so small that it can only be observed after many (-3 x 104) 
time steps. 

These results for linear flow have proved difficult to quantify [ 111. We therefore 
turn to the five-spot oil reservoir, which can be characterized by a single figure, the 
sweep efficiency S at the moment of breakthrough. 

4. THE FIVE-SPOT OIL RESERVOIR 

The “five-spot” well pattern is shown in Fig. 2. Water (or some other fluid) is 
injected at the wells marked Z, and oil (we hope) is recovered at the production 
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wells P. By symmetry we need only consider one repeating unit of the well pattern. 
However, as is shown in Fig. 2, there are two natural alignments for a rectangular 
computational grid. (In addition, a conformal transformation is frequently 
employed to obtain an “elliptic” grid [20, 28, 291, which we shall not consider 
here.) The results in Fig. 3 are computed on a diagonal grid. Thus the bottom left- 
hand corner of each plot corresponds to an injection well, the top right-hand corner 
to a production well. These points are held at constant pressure p = 1, 0, respec- 
tively; elsewhere the pressure gradient normal to the boundary is zero. Figure 3 
shows the zones saturated by the injected fluid at the moment of breakthrough, 
when fluid 2 reaches the production well. Miscible five-spot flooding experiments 
have been performed on a laboratory scale in sand beds [30] and in packed beds of 
glass beads [31]. There is a marked qualitative agreement between the experimen- 
tally observed fingering and that predicted by simulations, over the whole range of 
stable and unstable viscosity ratios. 

The five-spot problem is a classical test for reservoir simulations [ 18-21, 28, 29, 
322391. Saturation; of the initial and injected fluid are usually allowed to vary con- 
tinuously between 0 and 1, for both miscible and immiscible fluids. However, 
Glimm et al. [29] have studied miscible fluids with zero diffusion, using front 
tracking. To reproduce the fingering which is observed experimentally [30, 311, 
they start with a perturbed interface between the fluids. The fingering in Fig. 3 is 
excited by the numerical method itself. Note that in Fig. 3a, a numerical instability 
occurs when the front approaches the no-flux boundary. Although the initial fluid 

SWEEP EFFICIENCY 

1.0 - 

0.6 - 

0.6 - 

0.4 - 

0.2 - 

0.0 1 I I I I 
10 20 40 60 160 

GRID SIZE 

FIG. 5. The sweep efficiency S, as a function of the grid size, at viscosity ratios pI/b2 = il, 0.1; 
0, 2.0; A, 10’; +, 104. Solid lines are results on diagonal grids, broken lines on parallel grids. 
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can be displaced by the injected fluid, the reverse is not permitted by the scheme 
at present. A perturbation of the interface cannot therefore be swept along the 
interface towards the production well. 

Numerical studies of the five-spot problem can be affected by grid orientation 
(see [39] for a review). Figures 4aac are computed on a parallel grid, with injection 
at the bottom left- and top right-hand corners. A convenient method of quantifying 
the results is to compute the sweep efficiency S, the fraction of fluid 1 produced up 
to the moment of breakthrough. S is shown in Fig. 5 as a function of grid size, for 
four different viscosity ratios. The solid lines correspond to diagonal grids of size 
20 x 20, 40 x 40, 80 x 80 and 160 x 160. The broken lines correspond to parallel 
grids, with the same sizes, though the results are displaced since, as can be seen in 
Fig. 2, a diagonal grid requires only half as many blocks to achieve the same 
resolution. There is no significant difference between the results. 

Note that different series of random numbers produce different results for S. Each 
point in Figs. 5-7 is therefore an average over five runs. The standard deviations are 
usually of the order of kO.03, but are up to +0.08 on the smaller grids and parallel 
grids. 

In Fig. 6 we show results, on a diagonal grid, as a function of viscosity ratio. The 
four curves correspond to the four grid sizes. Although the sweep efficiency is 
generally higher on the larger grids, the curves cross and the trend is not consistent. 
Also shown are the experimental results of Habermann [30] for the volumetric 
sweep efftciencies. These are in general lower than the computed results. An anaytic 

SWEEP EFFICIENCY 

0.0 ( I I I I I I 
0.0 0.1 1.0 10.0 100.0 low.0 lcoQ3.0 

VISCOSITY RATIO 

FIG. 6. The sweep efficiency S, as a function of the viscosity ratio pl/pZ. Diagonal grid, size: 
0, 160 x 160; 0, 80 x 80; a, 40 x 40; + , 20 x 20. x, Habermannb [30] experimental values. 
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result, S= 0.72 is available [28] when the viscosity ratio is unity, while Paterson 
[8] obtained, oiu simulations of diffusion limited aggregation, a sweep efficiency 
0.11 at an infinite viscosity ratio. 

The results presented in Figs. 3-6 suffer the defect that islands of fluid 1, surroun- 
ded by fluid 2, are not preserved. In two dimensions fluid 1 should not be able to 
escape: nevertheless the scheme allows fluid 2 to slowly fill up the island. This can 
be corrected by extra care, and Fig. 7 shows results for S when islands are preser- 
ved, but not allowed to move with the surrounding fluid. The effect of grid size is 
markedly reduced from that in Fig. 6. Conservation of volume is more correctly 
respected, and the scheme is therefore more consistent. However, the curves still 
cross each other, and cannot be used to obtain the scaling with grid size observed 
in [9, lo]. 

Even when volume is correctly conserved, there is still a difference between 
predicted and experimental sweep efficiencies. Moreover, the form of the viscous 
lingers at breakthrough (Fig. 8, at a viscosity ratio 100) now bears less resemblance 
to the experimentally observed lingers [30, 311. The experimental points on Figs. 6 
and 7 are volumetric sweep efficiencies. If S is measured on the basis of the area 
swept at breakthrough, the values obtained are higher. The bead bed used by 
Leftwich [ 3 1 ] had dimensions 210 x 210 x 5 mm, and was only five layers of beads 
thick. Even so fingering occurred within the depth of the bed, the full thickness of 
which was not swept. At viscosity ratios p,/pz = 1.0, 2.0, 10 and 100 Leftwich 

SWEEP EFFICIENCY 

VISCOSITY RATIO 

FIG. 7. The sweep efficiency S, as a function of the viscosity ratio pL1/p2, when islands are preserved. 
Diagonal grid, size: Cl, 160 x 160; 0, 80 x 80; A, 40 x 40; +, 20 x 20. x, Habermann’s [30] experimen- 
tal values. 
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INJECTED VISCOSITY=1000 
INITIAL VISC0SI'I'Y=100.000 
INITIAL SEED=4037 
NUMBER OF STEPS=6479 

NI=160 
NJ=160 
TRAPPING 

1.0 DENSITY 

FIG. 8. The displacement front at breakthrough, using a diagonal grid, with trapped islands of the 
original fluid preserved. Viscosity ratio p,/p2 = 102. 

obtained volumetric sweep efficiencies 0.6, 0.58, 0.35 and 0.2, while the area1 sweep 
efftciencies were 0.77, 0.73, 0.55 and 0.65. A purely two-dimensional solution 
neglects variations across the depth of the bed, and must be regarded with caution 
when the interface is unstable. Despite these problems, the form of the lingering 
produced by the simulations is sufficiently similar to the experimentally observed 
fingers even at high viscosity ratios of order 100, to make the scheme of interest. 
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